A boundary integral equation method for the two-dimensional diffusion equation subject to a non-local condition
نویسندگان
چکیده
منابع مشابه
Nvestigation of a Boundary Layer Problem for Perturbed Cauchy-Riemann Equation with Non-local Boundary Condition
Boundary layer problems (Singular perturbation problems) more have been applied for ordinary differential equations. While this theory for partial differential equations have many applications in several fields of physics and engineering. Because of complexity of limit and boundary behavior of the solutions of partial differential equations these problems considered less than ordinary case. In ...
متن کاملSolution of Two-dimensional Parabolic Equation Subject to Non-local Boundary Conditions Using Homotopy Perturbation Method
Aim of the paper is to investigate solution of twodimensional linear parabolic partial differential equation with non-local boundary conditions using Homotopy Perturbation Method (HPM). This method is not only reliable in obtaining solution of such problems in series form with high accuracy but it also guarantees considerable saving of the calculation volume and time as compared to other method...
متن کاملDifferential Transform Method to two-dimensional non-linear wave equation
In this paper, an analytic solution is presented using differential transform method (DTM) for a class of wave equation. The emphasis is on the nonlinear two-dimensional wave equation. The procedures introduced in this paper are in recursive forms which can be used to obtain the closed form of the solutions, if they are required. The method is tested on various examples, and the results reveal ...
متن کاملA meshless method for two-dimensional diffusion equation with an integral condition
This paper presents a new approach based on the meshless local Petrov–Galerkin (MLPG) and collocation methods to treat the parabolic partial differential equations with non-classical boundary conditions. In the presented method, the MLPG method is applied to the interior nodes while the meshless collocation method is applied to the nodes on the boundaries, and so the Dirichlet boundary conditio...
متن کاملA Closed-Form Solution for Two-Dimensional Diffusion Equation Using Crank-Nicolson Finite Difference Method
In this paper a finite difference method for solving 2-dimensional diffusion equation is presented. The method employs Crank-Nicolson scheme to improve finite difference formulation and its convergence and stability. The obtained solution will be a recursive formula in each step of which a system of linear equations should be solved. Given the specific form of obtained matrices, rather than sol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Engineering Analysis with Boundary Elements
سال: 2001
ISSN: 0955-7997
DOI: 10.1016/s0955-7997(00)00068-0